Abstract—This paper describes interactive digital painting

 technique where brush stroke is controlled via coupled map

 lattice model. Coupled map lattice model is an extension of

 cellular automata model where discrete (integer) state values

 of CA cells are replaced with continuous real values. Using this

 technique, various brush styles and strokes can be achieved.

 Index Terms—non-photo realistic, rendering, painterly, cellu-

 lar, coupled, map, lattice, brush, stroke, non-linear, dynamical,

 system, artistic.

 I. INTRODUCTION

 COUPLED map lattice model was proposed by Kanenko [1], as
general model for the complex high-dimensional dynamics,
such as biological systems, networks of DNA, economic activities,
networks, evolution, and so on. In the field of computer graphics,
CML is successfully used for image colorization/re colorization
and for image segmentation and encryption. Strictly speaking,
Coupled Map Lattice (CML) is defined as a n-dimensional lattice
where each site evolves in time through a map (or recurrence equation) of
the form:

\[S^{t+1} = F(S^t) \tag{1} \]

where \(S \) is continuous variable while \(t \) is discrete. In
the case of digital image, we have a two dimensional lattice,
so the state of cell (pixel) at position \((i, j)\) evolves in two steps:

1) Each cell is updated in discrete time step:

\[\tilde{S}_{i,j}^{t+1} = F(S^t) \tag{2} \]

2) Subsequently each cell is averaged over set of neighbors

\(\tilde{S}_{k,l}^{t+1} \), so we finally get:

\[S_{i,j}^{t+1} = (1 - \epsilon)\tilde{S}_{i,j}^{t+1} + \frac{\epsilon}{N} \sum \tilde{S}_{k,l}^{t+1} \tag{3} \]

where \((k, l)\) are indexes of neighbor states and \(\epsilon \) stands for

 coupling parameter used to control relative weight of site at

 \(i, j \) and it’s surrounding neighborhood .

 Although the first term in CML stands for coupled,

 when the second step is omitted, we are actually speaking

 of uncoupled map. Roughly speaking, CML model stands

 for both cases, although without coupling, only difference

 between CML and CA is continuous (real) vs. discrete (integer) state value.

 In this article, we will examine both cases (coupled

 and uncoupled) in order to get a wider palette of artistic

 brushes.

 II. PROCESS OVERVIEW

 BUSH stroke rendering process starts with seeding

 points over input one channel floating point image

 by simply changing pixel value along the stroke’s path.

 Seed points spacing is determined by some step variable,

 i.e. distance between each subsequent seeding point.

 After seeding process, we perform iterations over the stroke area,

 which is determined by stroke length and brush tip size.

 For each pixel inside our stroke, a new pixel state is calculated

 using some function as described in step 1, from previous

 paragraph. So what function to choose? I have decided to use

 CA logic and again the new pixel state \(t+1 \) is calculated from

 previous pixel state \(t \) depending on neighborhood situation and

 given rule.

 At this point, we introduce three possible rules and

 each one depends on current pixel value: creation, destruction

 and grow rules. Each rule examines the state of pixel’s

 neighborhood and if the rule is satisfied, pixel value (state) is

 changed:

 1) If current pixel value is 0, new pixel state (value) is
determined by creation rule. If creation rule is satisfied,
new pixel value is calculated, otherwise pixel value stays
the same (0). New pixel value may be calculated from
it’s neighborhood or by changing pixel value to some
given starting value.

 2) If current pixel value is equal to some maximum inten-
sity value (given as parameter) or decay flag is true, a
destruction (or decay) rule is examined.

 If rule is satisfied, a new pixel value can be calculated
from it’s neighborhood or changed (lowered) by some
decay factor \((1 - \epsilon)\) or by some decay (or decay)
decay factor \((1 - \epsilon)\). After the value

 is changed, a decay flag for this pixel at position \((i, j)\)
is set to true. When new pixel state reaches minimum

 intensity (given as parameter), destruction process is

 stopped.

 3) If current pixel value greater than 0 and less then some
maximum intensity (given as parameter) and decay flag
is false, a new pixel value can be calculated from it’s
neighborhood or simply changed using some constant
grow factor \((1 + \epsilon)\). If the new pixel

 value is greater then maximum value, pixel value is set
to maximum value.
If we closer examine previous steps, we can see that there is actually no grow rule at all. Pixels growth occurs when first two rules are not satisfied. If we introduce some kind of grow rule, we may enter the situation where nothing happens, i.e. no rules are satisfied and nothing is drawn at all. Also, we can allow pixels regrow when pixel value reaches minimum value (as described in step 2.) by simply setting decay flag back to false.

Of course, everything needs to be drawn somewhere. So, how many images we need? First of all, we need one 8-bit grayscale image (mask) where our brush stroke is drawn. We also need two single channel floating point images to keep new and current pixels states (images are swapped after each iteration), one 1-bit monochrome image for stroke bounding and one 1-bit monochrome image for storing decay flags. Finally, we need one 24-bit image (canvas), where brush stroke is colorized (rendered). All images are the same size (N x M). When we speak about images, we speak about two dimensional arrays of size N x M.

If coupling is involved, we need another (intermediate) floating point single channel image, to store \(S^{t+1} \), prior to calculating \(S^{t+1} \) as given by equation (3). Also, our state values are normalized, i.e. \(S \in [0, 1] \).

III. INSIDE THE RULES

RULES used for creation and destruction process are specified as 3x3 matrix with “n-ary” Boolean operators as elements. Matrix mid point is irrelevant as it presents current pixel at position \(i, j \). I wrote “n-ary” Boolean operators in quotes, because they are not true n-ary Boolean operators.

As you may know, in Boolean algebra, besides well-known binary operators, there are also operators of higher order. The number of n-nary operators is \(2^{2^n} \), so there are 4 unary operators, 8 binary operators, etc. Those familiar with programming languages may know that most programming languages use one unary operator: NOT, mostly three or four binary operators: AND, OR, XOR, NAND and one trinary operator: IF THEN ELSE (from the set of 256). Also, in logic, a two more binary operators are used: \(\Rightarrow \) (implication) and \(\leq \) (explication).

Operators such as OR, AND and NAND can be applied to multiple operands in old-fashioned binary way, as result of \(A \lor B \lor C \lor D \) is the same as \(((A \lor B) \lor C) \lor D \). The same stands for AND and NAND operators. Now, here we need operator that would satisfy this condition:

Expression \(A \oplus B \oplus C \oplus D \) is true if only one of the operands is true, otherwise is false.

It looks like binary XOR, but it’s not. I will use the name XOR for this operator, but keep in mind that it’s not binary XOR operator. Above expression can be evaluated using function that would count elements that are true and if count is exactly 1 function would return true, otherwise false. However, to be able to evaluate complete matrix in one routine, above method is slightly changed. Finally, our rule matrix elements take value from set of operators \{OR, AND, NAND and “XOR”\}. So, the rule matrix can look something like this:

<table>
<thead>
<tr>
<th>OR</th>
<th>OR</th>
<th>OR</th>
<th>XOR</th>
<th>XOR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>OR</td>
<td>OR</td>
<td>XOR</td>
<td>XOR</td>
<td>XOR</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td>OR</td>
<td>XOR</td>
<td>XOR</td>
<td>XOR</td>
</tr>
</tbody>
</table>

or a mixture of various operators:

<table>
<thead>
<tr>
<th>NAND</th>
<th>OR</th>
<th>XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>OR</td>
<td>XOR</td>
</tr>
</tbody>
</table>

Each operator corresponds to respective neighbor pixel. To get Boolean value from floating point pixel value at position \(k, l \), we will use simple inequality: \(S_{k,l}^{t+1} > fTolerance \). Constant \(fTolerance \) is usually set to some small floating value, like 0.0001, so if condition is satisfied we’ll get a true value, otherwise false. Int he first example, all those values will be OR-ed. Second matrix example, uses our famous “XOR” and result will be true only if exactly one element in the neighborhood is true, otherwise false. The third matrix is a mixture of various operators. To avoid unnecessary and expensive if's, we will use an array of structure (C++):

```c++
struct structCmlLogic {
    BYTE Container[8];
    bool Result;
    int Count;
};
```

Logical operator are mapped to respective array indexes: \{ OR, AND, XOR, NAND \} \(\rightarrow \{ 0, 1, 2, 3 \} \). So, \(\text{logic}[0] \) represents OR, \(\text{logic}[1] \) AND, and so on. Initially, far all array elements, \(\text{Container}[0] \) is set to \(0x01 \). Neighbor pixels are examined in a left-right/up-down order, so that two-dimensional \(k, l \) indexes are mapped to one-dimensional array. For each neighboring pixel, we cast inequality \(S_{k,l}^{t+1} > fTolerance \) to a Boolean variable. If this variable is true, we set respective \(\text{Container} \) element to \(0x01 \), otherwise to \(0x00 \):

```c++
void addLogicContainer(struct structCmlLogic *logic, int index, bool v1) {
    logic[index].Container[logic[index].Count++] = v1 ? 0x01 : 0x00;
}
```

After neighborhood is examined, we perform final rule calculation:
When the rule is satisfied, we will change pixel value at position \(i, j \) by some function. If the rule is "creation", we simply set pixel value to constant, \(fSeed \). If the rule is "destruction" we can decrease pixel value by some amount. Otherwise, we have growing process and pixel value is increased by some amount. For example:

1) **If creation** rule \(Cr \) is satisfied: \(S_{t+1}^{i,j} = fSeed \)
2) **If destruction** rule \(Dr \) is satisfied:
 \[
 S_{t+1}^{i,j} = (1 - \epsilon_{\text{decay}})S_{t}^{i,j}
 \]
3) Else, **growing** is performed:
 \[
 S_{t+1}^{i,j} = (1 + \epsilon_{\text{grow}})S_{t}^{i,j}
 \]

We have used linear value transformation, but we can apply any kind of function to get desired result. So, our recurrence mapping (2) would look something like this:

\[
\begin{align*}
\tilde{S}_{t+1}^{i,j} &= \begin{cases}
S_{t}^{i,j} &\text{if } S_{t}^{i,j} = 0 \land Cr = \text{true} \Rightarrow fSeed \\
S_{t}^{i,j} &\text{if } S_{t}^{i,j} > 0 \land Dr^* = \text{true} \Rightarrow (1 - \epsilon_{\text{decay}})S_{t}^{i,j} \\
S_{t}^{i,j} &\text{if } S_{t}^{i,j} > 0 \land Dr^* = \text{false} \Rightarrow (1 + \epsilon_{\text{grow}})S_{t}^{i,j}
\end{cases}
\end{align*}
\]

Where \(Dr^* \) denotes destruction rule in combination with decay flag \(\delta_{i,j} \). If decay flag is false, \(Dr^* \) is always false, otherwise \(Dr \) rule is applied. Now, we can finally write down an algorithm(s) for our stroke.

IV. Stroke drawing

A**LGORITHM** for stroke drawing is quite straightforward. We will first examine an algorithm for **uncoupled** map lattice and with few changes we’ll get an algorithm for **coupled** map lattice.

Before we start our process, we must set all values to zero, for all images except 24-bit output image used for stroke rendering. After initialization, we draw seeding points along the stroke’s path. For each iteration we process our CML. After iteration counter reaches maximum value, we perform stroke rendering:

Main routine:
1) Set all values to zero (all images except 24-bit output image).
2) Seed stepwise points following stroke’s path with value \(fSeedValue \) in \(fInput \) image.
3) **Process CML.**
4) Swap \(fInputImage \) and \(fOutputImage \).
5) Repeat step 3. until maximum number of iterations is reached.
6) Render stroke onto canvas.

Now, we will go into detail regarding step 3. In case of uncoupled lattice, we simply call **processUncoupled** method which accepts two parameters, a pointer to output image and Boolean variable that specifies shell we put pixels in brush/stroke mask or not.

processUncoupled(paramOutput, paramDrawMask):

1) Loop through stroke bounding rectangle and fetch value \(S_{i,j} \) from \(fInput \) image.
2) If \(S_{i,j} > 0 \) examine decay flag and check destruction rule:
 a) If \(\delta_{i,j} = \text{true} \land Dr = \text{true} \Rightarrow \tilde{S}_{i,j} = (1 - \epsilon_{\text{decay}})S_{i,j} \).
 i) If \(\tilde{S}_{i,j} < fMinValue \Rightarrow \).
 \(S_{i,j} = fMinValue \)
 ii) Put a new value into \(paramOutput \) image.
 b) If \(\delta_{i,j} = \text{false} \), proceed to next step.
 c) Perform pixel growing: \(\tilde{S}_{i,j} = (1 + \epsilon_{\text{grow}})S_{i,j} \).
 d) If \(\tilde{S}_{i,j} \geq fMaxValue \Rightarrow \).
 \(\tilde{S}_{i,j} = fMaxValue \). Set decay flag to true:
 \(\delta_{i,j} = \text{true} \).
 e) Put a new value into \(paramOutput \) image.
3) If \(S_{i,j} = 0 \), apply creation rule:
 a) If \(Cr = \text{true} \Rightarrow \tilde{S}_{i,j} = fSeedValue \).
 b) Else, \(\tilde{S}_{i,j} = S_{i,j} \).
 c) Put a new value into \(paramOutput \) image.
4) If \(paramDrawMask = \text{true} \) multiply new pixel value by 255 and put it into brush/stroke mask (8-bit grayscale image).
5) End loop when \(i, j \) reach the end of bounding rectangle.

So, instead of step 3 in main routine, we simply put a call to our “uncoupled” method: **processUncoupled(paramOutput, true);**

In case of coupled lattice, we will first call “uncoupled” method, but with different parameters: **processUncoupled(paramIntermediate, false);** and then we will execute following steps:

```cpp
bool calculateLogicContainer(struct CmlLogic *logic)
{
    int i;
    // OR
    for (i = 1; i < logic[0].Count; i++)
        logic[0].Container[0] = logic[0].Container[0] | logic[0].Container[i];
    logic[0].Result = (bool)logic[0].Container[0];
    // AND
    for (i = 1; i < logic[1].Count; i++)
        logic[1].Container[0] = logic[1].Container[0] & logic[1].Container[i];
    logic[1].Result = (bool)logic[1].Container[0];
    // XOR
    for (i = 1; i < logic[2].Count; i++)
        logic[2].Container[0] = logic[2].Container[0] ^ logic[2].Container[i];
    logic[2].Result = (bool)logic[2].Container[0];
    // NAND
    for (i = 1; i < logic[3].Count; i++)
        logic[3].Container[0] = logic[3].Container[0] && logic[3].Container[i];
    logic[3].Result = !(bool)logic[3].Container[0];
    logic[3].Container[0] = (logic[3].Container[0] >> 1);
    for (i = 1; i < logic[3].Count; i++)
        logic[3].Result = (bool)(logic[3].Container[0] & 0x01);
}
```
processCoupled()

1) Loop through stroke bounding rectangle and fetch value \(S_{i,j}\) from \(f_{Intermediate}\) image.
2) Perform coupling:
\[
S_{t+1}^{i,j} = (1 - \epsilon)S_{t+i,j} + \epsilon \sum S_{k,l}^{t+1}
\]
3) Put the new value into \(f_{Output}\) image.
4) Multiply new pixel value by 255 and put it into brush/stroke mask (8-bit grayscale image).
5) End loop when \(i, j\) reach the end of bounding rectangle.

So, for coupled lattice, step 3. in main routine is replaced by these steps:

- processUncoupled\((f_{Intermediate}, false)\);
- processCoupled();

Mate.

V. MODIFICATIONS AND IMPLEMENTATION

SOME modifications to our algorithm can give quite a boost to artistic effects that we can achieve using this technique. First of all, we can introduce some randomness in our model. We will do so by adding probability parameters regarding creation, destruction and growth rule. Each parameter specifies the probability of executing it’s respective rule. Also, We can let user to select function (2): linear, quadratic, etc. Rule matrix can be modified as well: elements can be rotated (counter clockwise) or shuffled.

Implementation is done in Pixopedia 2014 from version 0.4.1. and up: By selecting “CML brush” following parameters appear:

We will briefly explain parameters meaning and conjunction to variables from previously described algorithms:

- Min.-Seed-Max. intensity (divided by 255) correspond to \(f_{MinValue}, f_{SeedValue}, f_{MaxValue}\) respectively.
- G factor and D factor sliders correspond to \(\epsilon_{grow}, \epsilon_{decay}\) respectively.
- G prob., D prob., C prob. are probabilities for grow, destruction/decay and creation. Values range from \([0,100]\]. Internally, probabilities are normalized (scaled to \([0,1]\)).
- Iters parameter specifies number of iterations.
- Reborn (regrow) parameter specifies if decay flag will be set back to false after minimum intensity in destruction/decay process is reached in order to allow re-growing of pixel.
- \(Gf\) and \(Df\) are used to select recursive function (linear, quadratic, neighbor bulling and inverse neighbor) for growing and destruction/decay respectively. Function type is changed by clicking on appropriate sky-blue colored rectangles.
- Combo box below Reborn check boxes is used to select uncoupled, coupled simple or coupled Nzn mode. Uncoupled and Coupled simple modes are the same as described in previous sections and Coupled Nzn mode slightly differs from simple coupling as it sums only neighboring pixels that are greater then zero (NzN - non-zero neighbors).
- Weight slider is used to set \(\epsilon\) value in coupling equation (3).
- Creation and Destruction rules matrices correspond to \(Cr\) and \(Dr\). Operators are changed by clicking on appropriate sky-blue colored rectangles.
- Two combo boxes on the bottom are used to specify matrix modification: as is, rotate and shuffle.

When all global (brush size, step, bumping, filters, etc...) and specific (as describe above) parameters are set, simply draw the stroke over image. Until mouse button is released, previously described process is performed. You will notice that stroke appearance changes depending on how fast you move your mouse. Because of vast amount of available parameters, lot of experimentation form the user’s side is required in order to get acquaintance with CML brush. In the next section we will describe few settings that give very pleasant artistic effects.

VI. EXAMPLES AND CONCLUSION

FOR the sake of simplicity, most examples presented in this article use the same brush size set to 60. With every figure, picture of currently used brush parameters is attached.

To conclude this article, some thoughts on future work:

- Besides using CML only for brush stroke construction (which is actually 8-bit grayscale mask), we can also couple (in rendering process) original image, full color 24-bit pixels value with brush color, to achieve interesting “colorizing” effects.
- We can use some “non-blank” image and apply CML on randomly seeded points, or use image contour as stroke
path, performing our rules and coupling methods on full color 24-bit images.

- Use background tiles to simulate various papers/canvases and let CML stroke interact with them.

Of course, readers feedback and implementation of any news and achievement in the field of CA and CML is highly recommended.

Figure 1. Uncoupled lattice using default CML settings with brush bumping, blur filtering and stroke inversion.

Figure 2. Coupled lattice (simple) using reborn option without creation process.

Figure 3. Uncoupled lattice with altered creation matrix

Figure 4. Coupled lattice with altered destruction matrix

Figure 5. Coupled lattice (simple) with brush size set to 14, using autobrushing technique

REFERENCES
